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ABSTRACT
Over the last decade, advances in mobile technologies have enabled
the development of intelligent systems that attempt to recognize
and model a variety of health-related human behaviors. While auto-
mated dietary monitoring based on passive sensors has been an area
of increasing research activity for many years, much less attention
has been given to tracking fluid intake. In this work, we apply an
adaptive segmentation technique on a continuous stream of inertial
data captured with a practical, off-the-shelf wrist-mounted device
to detect fluid intake gestures passively. We evaluated our approach
in a study with 30 participants where 561 drinking instances were
recorded. Using a leave-one-participant-out (LOPO), we were able
to detect drinking episodes with 90.3% precision and 91.0% recall,
demonstrating the generalizability of our approach. In addition
to our proposed method, we also contribute an anonymized and
labeled dataset of drinking and non-drinking gestures to encourage
further work in the field.

CCS CONCEPTS
• Human-centered computing → Empirical studies in ubiq-
uitous andmobile computing; •Applied computing→Health
informatics.
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1 INTRODUCTION
A long-standing vision of human-centered intelligent systems has
been of machines that can continuously sense, understand, an-
ticipate, and react to human behaviors. While systems that can
model the entire spectrum of human activities remain elusive, the
mainstream adoption of sensor-laden smartphones and wearable
devices has been instrumental in advancing the development of
systems that can automatically detect and model health behaviors.
An example of a critical health behavior is fluid consumption, i.e.,
drinking. As the predominant means of supplying water to the body,
fluid consumption plays an important role in regulating hydration
[23]. While drinking is often triggered by the sensation of thirst in
healthy individuals, many people require assistance when it comes
to fluid intake. For instance, older adults can be less sensitive to
the need to drink, and thus carry lower amounts of water in the
body [8]. As a result, seniors and older individuals tend to become
more susceptible to dehydration and prone to conditions such as
urinary tract infections, pneumonia, confusion, and disorientation.
The need to manage fluid intake applies to many other health con-
ditions as well such as chronic heart failure, overactive bladder and
eating disorders [11, 12, 14]. Hemodialysis and urolithiasis patients,
in particular, must pay increased attention to drinking behavior,
and are often in need of interventions to regulate fluid consumption.
While the former might often need to restrict drinking, as excessive
fluid may exacerbate their condition and lead to mortality [25], the
latter are advised to consume more fluid to prevent the recurrence
of kidney stones [7]. Managing fluid consumption hinges on the
ability to track how much one drinks and when. Traditional fluid
intake monitoring approaches rely on subjective, self-report meth-
ods, such as 24-hour recalls and daily diaries. Unfortunately, these
methods depend on the ability to recall past drinking events, and
are prone to biases and memory recollection errors. Such draw-
backs greatly increase the risk of false characterizations of fluid
consumption, motivating the wearable computing community to
develop objective drinking monitoring systems based on passive
sensor data. In this paper, we describe a method for automated
fluid intake monitoring that leverages inertial sensors in an off-the-
shelf activity tracking wrist band. Our analytical approach, based
on an adaptive segmentation technique, demonstrated not only
promising performance in fluid intake detection but also proved to
generalize well in a study with 30 participants. In the experiment,
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participants engaged in 19 different daily activities meant to sim-
ulate a wide range of real-world scenarios. Comparatively, prior
research in the field using similar methods have been conducted
with a significantly smaller number of participants [2]. The specific
contributions of this work are:

• A computational method for fluid intake detection based
on adaptive windowing and segmentation leveraging the
accelerometer sensor in an off-the-shelf activity tracking
wristband.

• An evaluation of the fluid intake classifier with a dataset
compiled in a laboratory study (n=30) and comprised of a
variety of realistic everyday activities and gestures (90.3%
precision and 91.0% recall, leave-one-participant-out).

• An anonymized and labeled dataset containing 3-axis ac-
celerometer signals captured with a wrist-mounted device
reflecting drinking and non-drinking behaviors.

2 RELATEDWORK
An extensive body of work exists in the areas of automated dietary
tracking and fluid intake monitoring. Recently, these have included
hand-grasping posture recognition with depth cameras [9], and
specialized sensors for tracking dietary-related sounds and specific
body movements, e.g., jawbone. [10, 16, 26]. In the context of fluid
intake, Mengistu et al. presented AutoHydrate, a microphone-based
automated hydration monitoring system. Eight participants were
recruited for the evaluation of the system, and drinking detection
accuracy of 91.5% was obtained in a controlled lab setting. Au-
toDietary employed a similar sensing configuration and reported
accuracy of 97.6% [5]. Despite these promising results, it is worth
noting that the need for a microphone to be placed on the neck for
collecting acoustic signal presents a significant challenge for the
mainstream uptake of both AutoHydrate and AutoDietary. Given
the ubiquity of smartphones and growing popularity of wearables,
it is not surprising that much activity in dietary and fluid intake
monitoring has made use of these types of devices. Bae et al. used
built-in sensors in smartphones to detect the beginning of alcohol
drinking events [3]. In the study, sensor data such as acceleration,
location information, and communication logs were used to char-
acterize drinking, non-drinking, and heavy drinking episodes. The
researchers analyzed data from 30 young adults between 21 and 28
years old and obtained 96.6% accuracy for distinguishing these activ-
ity classes. Despite the promising results, the aim of this work was
not to detect regular drinking activity throughout daily life. Instead,
it narrowed its scope to alcohol drinking activity. The work that
is most closely related to ours is the one by Amft et al. [2]. In this
research, the authors also explored the possibility of recognizing
drinking moments from wrist-mounted inertial sensors. Method-
ologically, the Mann-Whitney-Wilcoxon test was chosen for feature
selection and the feature similarity search technique was picked for
signal pattern modeling. Six participants and 560 drinking motion
instances were captured in the study. Drinking motion spotting was
obtained with average precision of 94% and recall of 84%. Despite
these very encouraging results, this study involved a small number
of participants and did not employ a consumer-grade wristband de-
vice such as many of the activity tracking wearables popular today;
at the time the study took place, these wearable systems were not

Figure 1: The raw and computed accelerometer signals we
analyzed (left) and the pattern of a fluid intake gesture from
beginning to end.

yet available. Therefore, the two key aims of our work in light of
this prior work are to test whether a practical approach leveraging
an off-the-shelf wearable produces equivalent performance results,
and to evaluate whether said approach generalizes to a larger set
of individuals.

3 MODELING FLUID INTAKE GESTURES
Over the past decades, an extensive body of work has been ded-
icated to gesture recognition [17, 19–21]. According to McNeil
and Kendon, a gesture can be segmented in five phases, namely,
preparation, pre-stroke hold, stroke, post-stroke hold, and retrac-
tion [17, 19]. Fluid intake activity also gives rise to a characteristic
pattern that can be segmented into five phases as suggested by
McNeil and Kendon (See Figure 1). A key characteristic of fluid
intake is the set of motion patterns performed by the hand, wrist
and arm during the act of drinking. In the general case where a fluid
container (e.g., a cup or glass of water) is sitting on a table, these
motion patterns include (1) grasping the container, (2) elevating
it towards the mouth, (3) tilting the container such that the fluid
flows into the mouth, (4) lowering the container back to its original
position on the table, (5) and finally releasing it. When captured by
inertial sensors placed on the wrist, these motion patterns consti-
tute a stable behavior marker of fluid intake as shown in Figure 1.
This is the case despite differences in the shape of the signal due
to interpersonal variability, container shape, container size, fluid
type, speed of intake, and other factors. Therefore, in this work,
we model this drinking signature and use it as an indicator of fluid
intake activity.

4 DATA COLLECTION
To computationally model drinking gestures from inertial sensor
data and evaluate the performance of our approach, we conducted
an IRB-approved human-subjects study. To encourage further re-
search in the field, we are making the dataset we compiled from
this study publicly available.

4.1 Participant Recruitment
Participants were recruited through the Penn State Study Finder ser-
vice. Prospective participants (n = 56) completed a telephone screen-
ing to assess interest and determine eligibility. Eligible participants
(n = 30) were 18 years or older, fluent in spoken English, owned a
smartphone, had no limitations in standing, moving or picking up
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Figure 2: The figure shows segments of x-acceleration time series from the left hand. The space between two vertical dashed
lines indicates frame size, and the horizontal dashed line indicates the maximum value from the original frame. Case 1 shows
the expansion of frame for drinking signal where the frame size is expanded as a result of pattern-based segmentation. Case
2 shows a non-drinking signal whose frame size is unchanged at the end of pattern-based segmentation. ∆z is is amplitude
difference between themaximumvalue in the original frame and the boundary values of the frame. From the original 1-second
window, frame size expands bidirectionally for 10 times with a step size of 0.5 second. If ∆z is greater than the amplitude
threshold, frame size remains expanded. Otherwise, frame size shrinks back to the original size.

things without assistance, had no limitations that impacted their
ability to drink, and were willing to complete the study procedures
(e.g., being video recorded while filling out questionnaires, drink-
ing water, interacting with another participant). Height and weight
were measured using a wall-mounted stadiometer and digital scale.
Demographic characteristics were measured via self-reports (e.g.,
age, sex, race, ethnicity, education). TwoWavelet Health wristbands
were worn by each participant to capture inertial data at the left
and right wrists. Accelerometer data was captured at a sample rate
of 20 Hz.

4.2 Procedures
Participants were scheduled in dyads (i.e. 2 participants per session)
and asked to wear loose clothing, to bring a meal to the session,
and not to drink for 2 hours before the lab session. Following intro-
ductions, a research assistant described the study and participants
provided written informed consent. One research assistant initi-
ated recording with two wall-mounted video cameras in opposite
corners of the room while the other research assistant measured
each participants’ height and weight. Then, participants completed
a baseline questionnaire assessing demographics. The research as-
sistants then outfitted each participant with the Wavelet Health
wristbands. Next, participants completed a scripted activity to sync
the sensor and video data. The research assistant gave each partici-
pant several containers filled with water (i.e., a cup, water bottle,

wine glass and coffee mug) with instructions to drink ad libitum
throughout the protocol and to notify a research assistant if they
needed more water. Participants were asked to take at least one
sip from each container. The research assistant then placed all con-
tainers aside with the exception of the cup. For the first phase of
the protocol, participants then watched three movie trailers while
eating popcorn, engaged in a prompted discussion of the trailers
(Have you seen any of these movies? Which movie would you want
to see? What’s your favorite movie?), brushed their teeth and hair
at a sink and mirror in the lab, and read magazines and answered a
phone call from the researcher on their cell phone. Participants had
a brief break to use the restroom outside the lab while a research
assistant replaced the cup of water with a water bottle for the sec-
ond phase of the protocol. Upon returning, participants copied a
picture from paper onto a free standing dry erase board, copied that
drawing onto a piece of paper, typed a note on their smartphone
describing their drawing, took a photo of the drawing, and washed
their hands at the sink in the lab. The research assistant replaced
the water bottle with a wine glass for the third phase of the protocol.
Participants ate the meal they brought, washed their hands, put a
lab coat on over their clothing and buttoned the lab coat, put a scrub
top over the lab coat, and removed both the scrub top and lab coat.
The research assistant replaced the wine glass with a coffee mug for
the final phase of the protocol. Participants folded laundry (towel,
t-shirts), sat at a computer workstation to search for and browse
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Figure 3: The top histogram shows the distribution of fluid
intake gesture durations for all drinking instances from the
lab study. The bottom histogram shows the distribution of
expanded frames from a single participant after adaptive
segmentation. Unexpanded frames (≤ 1 second ) are not
shown

.

their favorite news website, walked up and down the hallway and
stairs outside the lab having a conversation with the experimenter,
returned to the lab, played three games of catch using balls of var-
ious sizes, and sat to complete a free-writing exercise about the
protocol as a whole. Participants wore the sensors throughout this
protocol and the wall-mounted cameras recorded continuously.

5 ANALYTICAL METHOD
We processed the 3-axis accelerometer sensor signals using an
activity recognition pipeline spanning multiple stages, from pre-
processing and frame extraction to classification. Early in this
pipeline we derived two additional time series based on the x and y
accelerometer channels, as seen in Figure 1. One additional time
series was obtained by taking the inverse tangent of the ratio of y-
series to x-series (i.e. tan−1 y

x ). The other time series was generated
by calculating the L2 norm (i.e.

√
x2 + y2). These signals provided

Table 1: Summary of features used in the analysis.

Feature Feature Description
1-2 maximum value of acceleration along the x and y-axis
3-4 minimum value of acceleration along the x and y-axis
5-6 skewness of acceleration along the x and y-axis
7-8 skewness of FFT of acceleration along the x and y-axis
9-10 kurtosis of FFT of acceleration along the x and y-axis
11-12 integral of FFT of acceleration along the x and y-axis from 0 Hz to 1.25 Hz
13-14 maximum of FFT of acceleration along the x and y-axis from 0 Hz to 1.25 Hz
15-16 integral of cross-correlated values of x and y acceleration with a normal distribution
17-18 mean of cross-correlated values for x and y acceleration
19-20 variance of cross-correlated values of x-acceleration and a normal distribution
21-32 maximum of cross-correlated values of x-acceleration and a normal distribution
23-30 amplitude difference between the end values and the maximum and the minimum
31-34 number of maximum and minimum values in x-acceleration and y-acceleration
35-36 maximum and minimum of inverse tangent of y-acceleration and x-acceleration
37 mean of inverse tangent of y-acceleration and x-acceleration
38 skewness of inverse tangent of y-acceleration and x-acceleration
39 kurtosis of inverse tangent of y-acceleration and x-acceleration
40 variance of inverse tangent of y-acceleration and x-acceleration

41-42 maximum and minimum acceleration magnitude in xy-plane
43 variance of acceleration magnitude in xy-plane
44 skewness of acceleration magnitude in xy-plane
45 kurtosis of acceleration magnitude in xy-plane

information about the angular motion of wrist during drinking
activity on the xy-plane.

5.1 Adaptive Segmentation
In time series-based activity recognition, a sliding window of fixed
length is commonly used to extract frames from the underlying
sensor signals. While this approach has been employed in many
applications with success, it is often suboptimal since the duration
of many relevant behaviors can be variable [15], such as with drink-
ing activity (Figure 3). To circumvent this problem, we adopted
the adaptive windowing approach proposed by Laguna et al. [18].
This allowed us to match frames to the exact duration of drinking
instances. Our adaptive segmentation approach consisted of 4 steps.
Firstly, we computed a z-score measure to standardize the input
signal [1]. Secondly, we preset the window size length to 1-second
with no overlap between adjacent frames. Next, the window size is
expanded bidirectionally from the 1-second preset until the signal
within the window meets a certain condition: the amplitude differ-
ence between the maximum value and the final values of the signal
in the frame is greater than an amplitude threshold. In our study,
the amplitude threshold was set to a z-score value of 1.5 based on
heuristic evaluation. If the condition is met, the window expansion
stops; otherwise, the window size expands by 0.5 seconds in each
direction. If the condition is not met after 10 iterations, the window
size is set back to 1 second. This algorithm is illustrated in (See
Figure 2).

5.2 Feature Extraction and Classification
To prepare data sets for training, we generated frames with a 1-
second sliding window and we applied adaptive segmentation to
better refine the frame lengths. Then, we extracted features from
each frame. If the frame contained drinking, it was labeled as drink-
ing. Otherwise, it was labeled non-drinking. Then, the features and
labels from all training frames were input to the classifier.

We started by exploring simple features (e.g. minimum and max-
imum values, FFT features and etc.) and incrementally included
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Figure 4: F1 score for participants from the lab study is
shown in the figure. The majority of participants resulted
in F1 score of 0.9 or greater.

more processed features (e.g. from cross-correlation and data fu-
sion), comparing the performance of classifier. We utilized a total
of 45 features for the analysis, itemized in Table 1.

For classification, we considered several models and approaches
includingHiddenMarkovModels (HMMs), nearest neighbormodels
(k-NN) and DTW.We obtained best results using the Random Forest
(RF) learning algorithm [13] from the scikit-learn library [22]. RF
has performed well in a number of gesture spotting applications
[4, 24] and is particularly compelling because it does not require
much parameterization to perform well. The measure of feature
importance as calculated by "mean decrease impurity" [6] indicated
that features 11, 13, 7 and 9 proved to be the most informative.

6 EVALUATION AND RESULTS
To reiterate, a key goal of our work is to demonstrate a generalizable
method for detecting fluid intake. Towards this end, we evaluated
our method using the Leave-One-Participant-Out (LOPO) cross-
validation performance metric, where data from 29 participants was
used for training and the remaining participant’s data was used
for testing, iteratively. Due to class imbalance, i.e., much larger
number of non-drinking events compared to drinking events, we
randomly sub-sampled the non-drinking frames such that the ratio
of drinking frames to non-drinking frames was 1-to-70 (i.e., the
number of non-drinking frames is 70 times greater than the number
of drinking frames). Overall, we obtained an average precision of
90.3% and an average recall of 91.0% across the 30 participants.
Figure 4 shows F-measures for each participant.

7 DISCUSSION
7.1 Strength and Weakness
We used an off-the-shelf wristband to detect drinking activity. This
approach provides several benefits over other fluid intake tracking
methods. Firstly, our drinking detection algorithm can more eas-
ily scale. Secondly, our approach does not necessitate fluids to be
directly consumed from a container as is the case in smart water
bottles. Thus, users are not limited by the containers and can drink
from a variety of containers of their choice. Lastly, wristbands are
smaller in size and less obstructive compared with other drinking
monitoring devices (e.g. neckbands or smart water bottles). Despite

these strengths of our approach, we identified weaknesses in our
approach. Since our approach heavily relies on the acceleration
data, if drinking happens without using hands (e.g. drinking using a
straw), drinking activity will not be detected. Also, given that many
people usually put on a single wristband on their hands, drinking
activities from the opposite hand might be hard to detect.

7.2 Adaptive Segmentation
The top histogram in Figure 3 shows the distribution of drinking
periods, and the bottom histogram demonstrates expanded frames
after adaptive segmentation. As can be seen in the bottom his-
togram, adaptive segmentation allows for the broad distribution
of frames. This broad distribution provides our approach the ver-
satility to the wide variability of drinking durations. While the
expanded frames do not necessarily contain drinking signals, they
are more likely to capture drinking signals than those that remain
unexpanded because if the frames remain expanded, it means the
frames satisfied the expansion condition. It is to be noted that for
shorter frames, frame expansion may happen due to sudden motion
(e.g. sudden movement of the wrist) even if the drinking signal is
not present in the frame. Because of this false expansion, the fre-
quency of expanded frames between 1.05 seconds and 2.55 seconds
is high even if the frequency of drinking for the corresponding
period is low(See Figure 3). However, as the signals contained in
the erroneously expanded frames are not reflective of drinking,
such frames are correctly classified as non-drinking. In our analy-
sis, we compared the performance of the classifier before and after
adaptive segmentation and observed significant improvement in
precision and recall after adaptive segmentation.

8 CONCLUSION
We implemented and evaluated an approach for fluid intake de-
tection leveraging wrist-mounted inertial sensors. Using adaptive
window segmentation, we obtained promising results with a large
number of participants, demonstrating the generalizability of the
technique. Despite the need for further experiments in ecologically-
valid settings, we are encouraged by our findings. This is partic-
ularly true because we believe our proposed method is not only
practical but also scalable, as it does not require a specialized sensor
or dedicated device like a smart water bottle. Instead, it makes use
of inertial sensors in commodity devices such as smartwatches and
activity bands, whose mainstream adoption continues to grow.

ACKNOWLEDGMENTS
This project was supported by the Penn State CTSI Grant (UL
Tr000127) from the National Center for Advancing Translational
Sciences, National Institutes of Health. The content is solely the
responsibility of the authors and does not necessarily represent the
official views of the NIH.

REFERENCES
[1] Luai Al Shalabi, Zyad Shaaban, and Basel Kasasbeh. 2006. Data mining: A

preprocessing engine. Journal of Computer Science 2, 9 (2006), 735–739.
[2] Oliver Amft, David Bannach, Gerald Pirkl, Matthias Kreil, and Paul Lukowicz.

2010. Towards wearable sensing-based assessment of fluid intake. In Pervasive
Computing and Communications Workshops (PERCOM Workshops), 2010 8th IEEE
International Conference on. IEEE, 298–303.

84



IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA Chun et al.

[3] Sangwon Bae, Denzil Ferreira, Brian Suffoletto, Juan C Puyana, Ryan Kurtz,
Tammy Chung, and Anind K Dey. 2017. Detecting Drinking Episodes in Young
Adults Using Smartphone-based Sensors. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 1, 2 (2017), 5.

[4] Abdelkareem Bedri, Richard Li, Malcolm Haynes, Raj Prateek Kosaraju, Ishaan
Grover, Temiloluwa Prioleau, Min Yan Beh, Mayank Goel, Thad Starner, and
Gregory Abowd. 2017. EarBit: Using Wearable Sensors to Detect Eating Episodes
in Unconstrained Environments. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 1, 3 (2017), 37.

[5] Yin Bi, Mingsong Lv, Chen Song, Wenyao Xu, Nan Guan, and Wang Yi. 2016.
AutoDietary: A wearable acoustic sensor system for food intake recognition in
daily life. IEEE Sensors Journal 16, 3 (2016), 806–816.

[6] Leo Breiman. 2017. Classification and regression trees. Routledge.
[7] Wisit Cheungpasitporn, Sandro Rossetti, Keith Friend, Stephen B Erickson, and

John C Lieske. 2016. Treatment effect, adherence, and safety of high fluid intake
for the prevention of incident and recurrent kidney stones: a systematic review
and meta-analysis. Journal of nephrology 29, 2 (2016), 211–219.

[8] June C Chidester and Alice A Spangler. 1997. Fluid intake in the institutionalized
elderly. Journal of the American Dietetic Association 97, 1 (1997), 23–28.

[9] Jia-Luen Chua, Yoong Choon Chang, Mohamed Hisham Jaward, Jussi Parkkinen,
and Kok-Sheik Wong. 2014. Vision-based hand grasping posture recognition
in drinking activity. In Intelligent Signal Processing and Communication Systems
(ISPACS), 2014 International Symposium on. IEEE, 185–190.

[10] Keum San Chun, Sarnab Bhattacharya, and Edison Thomaz. 2018. Detecting
Eating Episodes by Tracking Jawbone Movements with a Non-Contact Wearable
Sensor. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 2, 1 (2018), 4.

[11] Susan Hart, Suzanne Abraham, Georgina Luscombe, and Janice Russell. 2005.
Fluid intake in patients with eating disorders. International Journal of Eating
Disorders 38, 1 (2005), 55–59.

[12] Hashim Hashim and Riyad Al Mousa. 2009. Management of fluid intake in
patients with overactive bladder. Current urology reports 10, 6 (2009), 428.

[13] Tin KamHo. 1995. Randomdecision forests. InDocument Analysis and Recognition,
1995., Proceedings of the Third International Conference on, Vol. 1. IEEE, 278–282.

[14] Marie Holst, Anna Strömberg, Maud Lindholm, and Ronnie Willenheimer. 2008.
Description of self-reported fluid intake and its effects on body weight, symptoms,
quality of life and physical capacity in patients with stable chronic heart failure.

Journal of clinical nursing 17, 17 (2008), 2318–2326.
[15] Tâm Huáżşnh, Ulf Blanke, and Bernt Schiele. 2007. Scalable recognition of daily

activities with wearable sensors. In International Symposium on Location-and
Context-Awareness. Springer, 50–67.

[16] H Kalantarian, N Alshurafa, and M Sarrafzadeh. 2014. A Wearable Nutrition
Monitoring System. In Wearable and Implantable Body Sensor Networks (BSN),
2014 11th International Conference on. 75–80.

[17] Adam Kendon. 2004. Gesture: Visible action as utterance. Cambridge University
Press.

[18] Javier Ortiz Laguna, Angel García Olaya, and Daniel Borrajo. 2011. A dynamic
sliding window approach for activity recognition. In International Conference on
User Modeling, Adaptation, and Personalization. Springer, 219–230.

[19] David McNeill. 1992. Hand and mind: What gestures reveal about thought. Uni-
versity of Chicago press.

[20] Christos Mousas. 2017. Full-body locomotion reconstruction of virtual characters
using a single inertial measurement unit. Sensors 17, 11 (2017), 2589.

[21] Christos Mousas, Paul Newbury, and Christos-Nikolaos Anagnostopoulos. 2014.
Analyzing and segmenting finger gestures in meaningful phases. In 2014 11th
International Conference on Computer Graphics, Imaging and Visualization (CGIV).
IEEE, 89–94.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[23] MN Sawka. 2005. Dietary reference intakes for water, potassium, sodium, chloride,
and sulfate.

[24] Edison Thomaz, Irfan Essa, and Gregory D Abowd. 2015. A practical approach
for recognizing eating moments with wrist-mounted inertial sensing. In Proceed-
ings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing. ACM, 1029–1040.

[25] Volker Wizemann, Peter Wabel, Paul Chamney, Wojciech Zaluska, Ulrich Moissl,
Christiane Rode, Teresa Malecka-Masalska, and Daniele Marcelli. 2009. The
mortality risk of overhydration in haemodialysis patients. Nephrology Dialysis
Transplantation 24, 5 (2009), 1574–1579.

[26] Koji Yatani and Khai N Truong. 2012. BodyScope: a wearable acoustic sensor for
activity recognition. UbiComp ’12: Proceedings of the 2012 ACM Conference on
Ubiquitous Computing (2012), 341–350.

85


	Abstract
	1 Introduction
	2 Related Work
	3 Modeling Fluid Intake Gestures
	4 Data Collection
	4.1 Participant Recruitment
	4.2 Procedures

	5 Analytical Method
	5.1 Adaptive Segmentation
	5.2 Feature Extraction and Classification

	6 Evaluation and Results
	7 Discussion
	7.1 Strength and Weakness
	7.2 Adaptive Segmentation

	8 Conclusion
	Acknowledgments
	References

